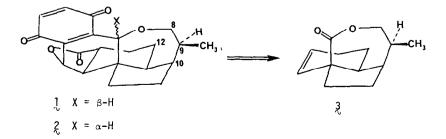
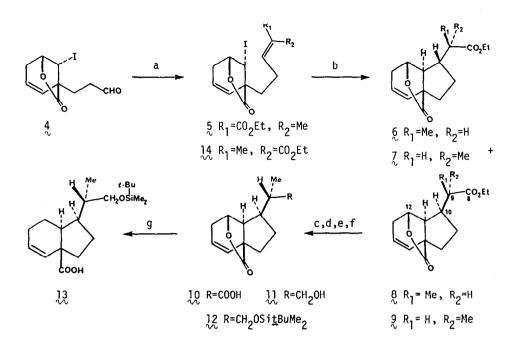
PREPARATION OF THE CDE-RING SYSTEM OF PLEUROTIN AND GEOGENINE VIA A STEREOSELECTIVE FREE RADICAL CYCLIZATION

David J. Hart^{*,‡} and Horng-Chih Huang


Department of Chemistry, The Ohio State University, Columbus, Ohio 43210


Summary: A synthesis of lactone 3, a projected intermediate in an approach to pleurotin (1) and geogenine (2), is described. The trans-perhydroindan nucleus is constructed using a stereoselective free radical cyclization (5 + 9).

Pleurotin $(1)^1$ and geogenine $(2)^2$ are structurally related quinoid natural products which exhibit pharmacological properties³ which may be a result of bioreductive activation.⁴ We have undertaken a synthesis of these molecules in which lactone **3** is projected to be a key intermediate. This communication describes a direct synthesis of **3** which features a remarkable stereoselective free radical cyclization.

The synthesis of **3** begins with aldehyde **4**, prepared in four steps (54% overall) from benzoic acid as described previously.⁵ Treatment of **4** with 1-(carbethoxy)ethylidene triphenylphosphorane gave ester **5** (mp 74-76°C; 94%) after purification.⁶ Free radical cyclization of **5** (nBu_3SnH , AIBN, benzene, 60°C) gave perhydroindans **6**(4%), **7**(4%), **8**(4%) and **9**(81%) after separation by silica gel chromatography.⁷ The structure of **9** (mp 76-78°C) was established by X-ray crystallography⁸ and the relationships between **6** and **7** (**8** and **9**) were established by epimerization experiments (NaOEt, EtOH).

With the perhydroindan nucleus of **3** intact, we turned to adjustment of oxidation state at C(8) and C(12). Treatment of ester **9** with lithium hydroxide in aqueous methanol gave acid **10** (mp 170-171^OC; 89%) which was converted to alcohol **11** [(i) (COCl)₂, (ii) NaBH₄; mp 103-107^OC; 91%]⁹ and subsequently ether **12** [TBDMSCI, Et₃N, DMF; mp 56-58^OC; 98%].¹⁰ The C(12)-0 bond was

(a) $Ph_3P=C(CH_3)CO_2Et$, CH_2CI_2 (b) <u>n</u>Bu₃SnH, AIBN, PhH, $60^{O}C$ (c) LiOH, $H_2O-MeOH$ (d) (COCl)₂ (e) NaBH₄ (f) <u>t</u>BuMe₂SiCl, Et₃N, DMF (g) Li, EtNH₂

then reduced using lithium in ethylamine to afford acid $13 \pmod{10-112.5^{\circ}C}$; 40%).^{11,12} Finally, treatment of 13 with oxalyl chloride in benzene at room temperature gave lactone 3 in 70% yield.

From a stereochemical standpoint, we felt that the highly selective conversion of 5 to 9 was interesting and decided to determine whether olefin geometry was a factor in the stereochemical course of this cyclization. Thus, treatment of 4 with the appropriate phosphorane in methanol¹³ gave esters 5 (65%) and 14 (15%), which were separated by column chromatography. Treatment of 14 with <u>nBu₃SnH</u> and AIBN under conditions identical to those used with 5 gave 6 (12%), 7 (15%), 8 (1.3%) and 9 (37%) after chromatographic separation.¹⁴ Thus, although olefin geometry does influence the stereochemical outcome at C(10), it does not play a significant role at C(9).¹⁵

In summary, a direct route to tricyclic lactone 3 has been developed. The synthesis provides an example of the utility of free radical cyclizations in the construction of

trans-perhydroindans.¹⁶ In addition, the stereoselectivity observed in the cyclization of **5** suggests that this approach might find use in the preparation of selected terpenoids which require control of sidechain stereochemistry.¹⁷

Acknowledgment. We thank the National Science Foundation for their support of this research. We thank Mr. Richard Weisenberger for recording mass spectra at The Ohio State University Chemical Instrument Center.

References and Notes

*Alfred P. Sloan Foundation Fellow, 1983-1985

- Dobler, M. <u>Crystl. Struct. Commun.</u>, 1975, <u>4</u>, 253, Grandjean, J.; Huls, R. <u>Tetrahedron</u> <u>Lett.</u> 1974, 1893.
- 2. Cohen-Addad, P. C.; Riondel, J. Acta Cryst. 1981, B37, 1309.
- Riondel, J.; Beriel, H.; Dardas, A.; Carraz, G.; Oddoux, L. <u>Arzneim.-Forsch</u> 1981, <u>31</u>, 293 (<u>Chem. Abstr.</u> 94:172819f). Robbins, W. J.; Kavanaugh, F.; Hervey, A. <u>Proc. Nat. Acad.</u> <u>Sci.</u> 1947, <u>33</u>, 171.
- 4. Moore, H. W. Science 1977, 197, 527.
- 5. Chuang, C.-P.; Hart, D. J. J. Org. Chem., 1983, 48, 1782.
- 6. All new compounds reported herein gave 1 H-NMR, IR, MS, and HRMS or combustion analytical data in accord with the assigned structures.
- 7. The C(12) protons in 6-9 appeared as broad singlets at & 4.61, 4.70, 4.58, and 4.88, respectively. A 500 MHz ¹H-NMR analysis of a pure mixture of cyclization products, prior to separation, gave 16:1:1 ratio of 9:7:6+8. The yields quoted in the text are of isolated material. The stereochemical assignments for 6 and 7 may be reversed.
- We thank Dr. Judith Gallucci for determining this structure at The Ohio State University Chemistry Department X-Ray Crystallography Facility.
- 9. Bablert, J. H.; Invergo, B. J. Tetrahedron Lett. 1981, 11.

- 10. Corey, E. J.; Venkateswarlu, A. <u>J. Am. Chem. Soc. 1972, 94</u>, 6190.
- 11. Barrett, A. G. M.; Godfrey, C. R. A.; Hollinshead, D. M.; Prokopiou, P. A.; Barton, D. H. R.; Boar, R. B.; Joukhadar, L.; McGhie, J. F.; Misra, S. C. <u>J. Chem. Soc., Perkin I</u> 1981, 1501.
- 12. In addition to 13, material in which the carbon-carbon double bond had been reduced was obtained in 8% yield.
- 13. House, H. O.; Jones, V. K.; Frank, G. A. J. Org. Chem. 1964, 29, 3327.
- 14. A 500 MHz ¹H-NMR analysis of a mixture of cyclization products, prior to separation, gave a 3.2:2.2:1 ratio of 9:7:6+8.
- For another example where olefin geometry dramatically affects the stereochemical course of an intramolecular free radical conjugate addition see Wilcox, C. S.; Thomasco, L. M. J. Org. Chem. 1985, <u>50</u>, 546.
- 16. For another recent example see Stork, G.; Kahn, M. J. Am. Chem. Soc., 1985, 107, 500.
- For example see Nozoe, S.; Morisaki, M. J. Chem. Soc., Chem. Commun. 1969, 1319. Taber, D. F.; Krewson, K. R.; Raman, K.; Rheingold, A. L. <u>Tetrahedron Lett.</u> 1984, 5283 and references cited therein.

(Received in USA 2 May 1985)